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A R T I C L E  I N F O A B S T R A C T

Article history: This study compares classical (SK-1, SK-2, SSS, MED, STDM, PRSN)and bootstrap (KS and 
Student’s t) tests on the basis of size and power properties for six different data generating 
processes (chi-square distribution, beta distribution, lognormal distribution, mixture 
of two normal distribution, and mixture of two uniform and normal distribution) via 
Monte Carlo Simulations. In general, the classical tests for skewness perform better 
than bootstrap tests, however, in certain situations the bootstrap tests perform better. 
Therefore, this study recommends a strategy for choice of test to be applied in different 
situations. If the data histogram shows deviation from symmetry and the third moment 
is close to zero then the bootstrap tests should be used. In other cases the classical tests 
of skewness, in particular SK-2 which is the best performing test, should be used.
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1. INTRODUCTION
Skewness of a random variable refers to asymmetry in 

its probability distribution. Skewness is widely seen as a 
parallel to the third moment. Whenever the actual value of 
the third moment is zero, it is assumed that the distribution 
is symmetric, which means that the measures of central 
tendency possess an identical value and the basic shape 
of the distribution on both sides of its center is identical. 
Nevertheless, symmetry has a broader meaning that cannot 
be adequately captured by a single point conclusion of facts.    

People think that symmetry equates to zero value of third 
moment, but this is incorrect in practice. Additionally, there 
are several scenarios in which the distribution on both 
edges of the center of data varies while the third central 
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moment is zero. Statisticians recognized this problem 
and developed alternate measures of asymmetry, such as 
medcouple and split sample skewness. In the literature, 
skewness tests are divided into two distinct groups: 
bootstrap and classical testing. Numerous comparison 
studies using the Monte Carlo simulation approach are 
being conducted in the past to investigate the size and 
power aspects of skewness tests. 

Adil (2011) assessed five skewness tests based on 
test power employing the Monte Carlo simulation the 
strategy. He employed the chi-square, beta, and lognormal 
distributions for DGPs, with varied skewness options while 
maintaining the test size fixed. He created a novel skewness 
test called Split Sample Skewness (SSS) and shown that it 
was the most effective in identifying skewness. Doane 
and Seward (2011) evaluated modified standardized 
and modified Pearsonian skewness tests based on test 
power, employing the chi-square distribution for DGP 
using degrees of freedom (df=5) for moderately skewed 
chi-square and df=2 for highly skewed chi-square. They 
determined that modified standardized tests are most 
effective in identifying skewness. 

Tabor (2010) examined eleven tests of skewness using 
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the normal distribution for the DGP, with an average of 5 
and a standard deviation of 1. He used df = 40, df = 5, and 
df = 1 to represent slightly, moderately, and highly skewed 
distributions, accordingly. The author discovered that SK-1 
and SK-2 outperformed the remaining tests. Brys et al. 
(2003) examined six skewness tests on the foundation of 
power, employing the Gaussian distribution for the DGP, 
and determined that the medcouple test outperformed each 
of the five tests. Brys et al. Struyf (2004) examined three 
robust skewness tests employing the Gaussian distribution 
for the DGP based on test power utilizing the simulation 
approach and discovered that the medcouple performed 
well. 

Furthermore, Zheng and Gastwirth (2010) evaluated 
bootstrap tests of skewness using beta distribution with 
specifications of parameters (2, 2), uniform distribution 
having specifications of parameters [0, 1], and t-distribution 
having df=3 for DGPs. They identified that the two-sample 
t-test performed better. In a similar manner Riaz et al. 
(2018), Hussan et al. (2019), Waheed et al. (2021), and Akbar 
et al. (2019) make similar attempts. All of these research 
investigations mainly compared conventional or bootstrap 
assessments of skewness. Yet, there is no comparison 
between the bootstrap and classical tests for skewness. This 
study aims to address this gap by analyzing six conventional 
tests and two tests using the bootstrap approach. Also, 
our study provides a general strategy in which situations 
classical and bootstrap tests are useful to be applied. Section 
2 and 3 describe the classical and bootstrap tests considered 
while section 4 shows methodology adopted in our study. 
Section 5 explains simulations results corresponding to 
different DGP’s. Section 6 clarifies the situations through 
empirical example in which bootstrap tests are useful to 
apply while section 7 concludes all results derived from our 
study.

Classical Skewness Tests
Almost all classical skewness of measurement tests are 

constructed from the central tendency measurements (i.e. 
mean, median and mode). In this study we have considered 
six tests from classical skewness category. These tests with 
their mathematical structure are explained below. 

Pearsonian (PRSN) Test
Pearsonian coefficient of skewness (Hereafter, 

abbreviated PSRN) is introduced by Karl Pearson which 
takes mean and mode to measure skewness. However, 
sometime mode is dxifficult to obtain then Stuart and Ord 
(1994) used median instead of mode to define the test-
statistic as,

3( m )
.

mean edianPRSN
s d
−

=
The value of this test usually varies between -3 and +3. If 

PRSN=0 then distribution is diagnostic as symmetric. However, 
if this test statistic value is greater than zero the distribution is 
identified to be positively skewed, if the test value is less than 0 then 
distribution is called negatively skewed.

Standardized Moment (STDM) Test
The standardized moment test of skewness (Hereafter, 

abbreviated STDM) is defined as 3
3γ µ σ= , where 3µ is 

third central moment and σ is standard deviation, having 

its value in between -2 and +2 for most of the distributions. 
This test was developed by Jarque and Bera (1980). If the 
value of this test statistic is greater than zero then the 
distribution is detected as positively skewed. If the test 
value is less than zero then the distribution` is said to be 
negatively skewed and for symmetrical distributions the 
test value is zero.

Medcouple (MED) Test
This test was developed by Brys et al. (2004) which is 

based on two parts of the data set. Let there is a series

1 2 3, , ,......., nx x x x which is sorted such that 

1 2 3 ....... nx x x x≤ ≤ ≤ ≤  and let nm  is the median of 
this series. Then medcouple can be measured as, 

     
( ) ( )( )1 2 3, , ,......., ,

i n j

n i j
x m x

MC x x x x h x xmed
≤ ≤

=  ----- (1.1)

Where jx  are the values which are greater than median 
and ix  are the values which are lesser than median. For all

i jx x≠  the kernel function h is given by,

( ),i jh x x  =   
( ) ( )j n n i

j i

x m m x
x x

− − −

−
------ (1.2)

MC always lies between -1 and 1. Equation (1.2) 
calculates the (standardized) difference between the 
distances of jx  and ix  to the median. It is positive if jx  lies 
further from the median than ix  and ( ),i jh x x becomes 
negative if reverse situation occurs. A zero value is attained 
at the symmetric case where j n n ix m m x− = − . This test 
hereafter is abbreviated as MED.

Split Sample Skewness (SSS) Test
Adil (2011) presented this robust skewness approach 

(hence abbreviated SSS), essentially divides the entire set 
of data into two equal portions and then calculates the 
interquartile range for each portion by identifying the 
first and third quartiles on each side (to both sides of the 
median).

 Mathematically it is defined as, 

𝑆𝑆𝑆= ln (𝐼𝑄𝑅R / 𝐼𝑄𝑅𝐿)

Where 

IQRL= QL3- QL1 and     IQRR= QR3- QR1

IQRL and IQRR represents the interquartile range at 
the left and right part of the median. QR3, QR1, QL3, and 
QL3 correspond to the 87.5th, 62.5th, 37.5th, and 12.5th 
percentiles, respectively. Whenever the result is 0, the 
pattern of distribution is symmetric; alternatively, it could 
be negatively or positively skewed.

2.5. Skewness-1 (SK-1) Test

SK-1 test is taken from the study of Tabor (2010), in 
which SK-1 test with its high power is recognized as best 
performing test among eleven tests, it is defined as: 

max1
min

medianSK
median

−
=

−
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Skewness-2 (SK-2) Test
Similarly, SK-2 is also identified as best test from Tabor 

(2010)’s results. It is defined as,    

( )1 min max
22SK

median

+
=

Bootstrap Tests
Bootstrap method for measurement of skewness 

was introduced by Efron (1979, 1982), further 
discussed in Efron and Tibshirani (1993). Suppose that 

1 2 3, , ,.............,i nX X X X X=  and its median is ν . Now, two 
sub samples are obtained as,

Under the null hypothesis of same distribution from 
both sub-samples, iX is identified to be symmetric if 
the distribution of '

iX is similar to "
iX . The discrepancy 

between distribution of '
iX and "

iX could be calculated by 
any two suitable tests. The two tests used in this study are 
Students’s t-test (Hereafter, abbreviated t-test) and Kolmogorov-
Smirnov test (Hereafter, abbreviated KS). Modarres (2002) 
uses following bootstrap approach. 

Let 1 2 3, , ,.............,i nX X X X X=  is the given series 
with medianν , then

Y  is a vector of size 2n . A random sample with 
replacement of size n is generated from the above data 

( , )i i iY X Z= , two sample t-test (i.e. Student’s t-test ) 
and KS test (i.e. Kolmogorov-Smirnov) are applied using 
the procedure prescribed above and their values are 
noted. This process is repeated a large number of times 
(i.e. 10000) times and each time two sample t-test and KS 
test are applied and the values are noted. And, from these 
10000 values 5% critical values of each two-sample t-test 
and KS test have been calculated. The detail of each test of 
bootstrap test is given below.

Student’s t-Test 
This test is introduced by William Sealy Gosset 

in 1908 which is based on two sub samples. Let 

1 2 3, , ,.............,i nX X X X X=  is given series with 
medianν . Now, two sub samples are obtained as,

And the desired t-test is defined as,

Where 'X and ''X are the two samples of size 
2
n  and 

2
n

while 2
ps  is the unbiased pooled estimate common vari-

ance. Where  

2 2
1 2

2
1 1

2 2

2
2 2

p

n ns s
s n n

   − + −   
   =

+ −

 

with 

'2 ' 2
1

1 ( )
( 2 1)

s X X
n

= −
− ∑

 

and  
''2 " 2

2
1 ( )

( / 2 1)
s X X

n
= −

− ∑
 
is the unbiased variance.

Kolmogorov-Smirnov (KS) Test
Kolmogorov-Smirnov (KS) test is based on two sub 

samples and it is also called two sample test developed by 
Smirnov (1947). Let 1 2 3, , ,.............,i nX X X X X=  is 
given series having medianν  of this sample. Now, two sub 
samples are obtained as,

Then '
iX and "

iX  series are arranged in ascending order 
to obtain { }max iY test statistic, where

' "
i iY X X= − .

2. METHODOLOGY
In order to carry out comparison of classical and 

bootstrap skewness tests, six data generating processes 
(DGP) have been taken. DGP-1, under the null hypothesis of 
symmetry (i.e. no skewness), is used to calculate the size of 
all tests using simulated critical value. The size calculation 
of all tests under the null hypothesis of symmetry are 
obtained from three probability distribution; chi-Square 
distribution with df = 10000, beta distribution with (35, 35) 
and lognormal distribution with (10, 0.0001).     

In order to compare the power of all tests at different 
alternatives of skewness, five DGP’s are taken which are 
drawn from chi-square distribution, beta distribution, 
lognormal distribution, mixture of two normal distribution, 
and mixture of two uniform and normal distribution. First, 
using DGP-2, a random sample of size n is taken from chi-
square distribution with different degrees of freedomυ  as 
this distribution provides good plat form for comparison of 
tests of skewness. The skewness of chi-square distribution 
is measured from the third moment that is 2 8χ υ=
. By putting different values of υ  in this expression, 
different values of third moment theoretical skewness are 
obtained (see Table 1). Second, DGP-3 is taken from beta 
distribution with measurement of skewness define as beta=
(2( ) 1) / (( 2) )β α α β α β αβ− + + + + corresponding 
to different values of α and β  (see Table 1) to obtain 
different theoretical values of skewness. Third, DGP-4 
is used from lognormal distribution with measurement 
of skewness logn = 2 2

( 2) 1e eσ σ+ −  corresponding to 
theoretical values (see Table 1) of parameters of interest (i.e. 
meanµ and standard deviationσ ) to define different level 
of skewness. Fourth, a mixture of two normal distributions 
has been taken to define DGP-5 for variable X,

A measurement of skewness based on second and 
third moments for mixture of two normal distributions 
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is defined as ( )
3

2
3 2kwS U U= to detect different level of 

skewness corresponding to different theoretical values of 
2

1 2 1, , ,α µ µ σ  and 2
2σ (see Table 1). Finally, DGP-6 is defined 

from mixture of two uniform distributions and one normal 
distribution, that is,

A skewed distribution for the mixture of two uniforms 
and one normal distributions has obtained by taking 
different values of 2

1, , , , , ,a b aα β µ σ and 1b  (see Table 1) by 
using the measurement of skewness ( )

3
2

3 2kwS U U= , but 
it is observed that all tests detect zero skewness. 

Table 1
Theoretical Skewness of Distribution at Different Alternatives

Chi-Square Distribution

skewness 0.25 0.5 0.75 1 1.25 1.5 1.75 2 3

υ 128 31 14 8 5 4 3 2 1

Beta Distribution

Skewness 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

α 14.5 7.5 4.4 2.8 2 1.44 1.1 0.85 0.69 0.56 0.47 0.39

β 35 35 35 35 35 35 35 35 35 35 35 35

Lognormal Distribution

skewness 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

µ 10 10 10 10 10 10 10 10 10 10 10 10

σ 0.007 0.03 0.06 0.1 0.15 0.2 0.25 0.31 0.36 0.41 0.46 0.52

Mixture of two Normal Distributions

Skewness 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

α 0.1 0.1 0.1 0.1 0.1 0.12 0.1 0.1 0.8 0.8 0.1 0.1

1µ
2 2 1.6 2 2 2 6 6.7 0 0 3 3

2µ
0 0 0 0 0 0 0 0 2 2 0 0

2
1σ

0.8 0.7 0.7 0.2 0.6 0.8 0.8 0.8 0.2 0.1 0.5 0.9

2
2σ

1 0.8 0.6 0.5 0.5 0.5 1 0.9 1.2 1.5 0.1 0.1

Mixture of two Uniforms and Normal Distribution

 skewness α  β a B µ 2σ 1a 1b
SK-2 0 0.4 0.4 -5 2 0 0.3 2 4

STDM 0 0.1 0.4 -11 5 1 0.1 -1 16

SK-1 0 0.4 0.4 -5 2 1 0.1 1 2

PRSN 0 0.6 0.9 0 5 1 0.5 -8 0

SSS 0 0.1 0.9 -1 0 1 0.1 1 6

MED 0 0.1 0.5 -8 0 0 0.1 -1 2

Monte Carlo Simulation Design
The Monte Carlo simulation design of this study consists 

of the following steps. 

Calculation of Critical Values for Classical Tests of Skewness
•	 A symmetric series is generated for respective 

distributions and all classical tests of skewness are 
calculated. 

•	 Above step is repeated 10000 times and critical values 
with 5% level of significance are obtained. 

Calculation of Critical Values for Bootstrap Test of Skewness
•	 Let iX  be the data with median ν . 

•	 Calculate '          i iX X v if X v= − >  and "              i iX v X if v X= − >

•	 Calculate t-test and KS test using approach mentioned 
in section 3.

•	 The series 2i iZ Xν= −  is formulated such that iZ  has 
mirrored distribution of original sample iX . 

•	 A symmetric series ( , )i i iY X Z=  is also formulated 
and then iY  has a perfectly symmetric distribution.  

•	 A random sample of size n with replacement is 
generated. 

•	 Bootstrap tests based on two-sample t-test and KS test 
using the above prescribed procedure are applied and 
the values are noted. 
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•	 The above process is repeated 10000 times and the 
values are noted.

•	 From the above noted values 5% critical values of 
bootstrap tests based on two-sample t-test and KS test 
are calculated. 

Calculation of Power of Test
•	 A number of skewed series is generated and all classical 

and bootstrap tests of skewness are calculated.

•	 The values of all tests of skewness are compared with 
simulated critical values obtained in sections 4.1.1 and 
4.1.2.

•	 To find the power of a test, the above steps are simulated 
10000 times.

3. RESULTS & DISCUSSION
To provide base for the size of the test for all distributions 

considered in our study a symmetry is obtained. For 
this purpose, a high degrees of freedom for chi-square 
distribution while the same values of parameters of 
interest for beta distribution are taken to have symmetry 
distribution and provide a base for the size of test. A similar 
strategy has been followed for other skewed distributions. 

 

Power Computation in Chi-Square Distribution
At small sample size (i.e. n=40) among classical tests of 

skewness, SK-2 performs best and attains highest power 
at all alternatives (see Table 2). Similarly at this degree of 
freedom among bootstrap tests of skewness two sample 
t-test performs better. But, when the level of skewness is 
high, i.e. at degree of freedom 1, then all classical tests have 
almost same power except MED test. While two sample 
t-test under the frame work of bootstrap tests also attains 
high power. But at high level of skewness, i.e. at degree of 
freedom 1, all classical tests and bootstrap tests attain same 
power. 

A similar situations are observed for both type of 
skewness tests if sample size is medium (i.e. n=80), in which 
SK-2 test with high power at each alternate corresponding 
to different degrees of  freedom and skewness is observed 
as best test. Similarly, KS test with less power gain is 
identified as bad performer test in both categories. At 
large sample size (i.e. n=150) among classical tests SK-2, 
SK-1 and STDM tests have same power when the degree of 
freedom is 8. At this stage the power of MED test is very 
poor among classical tests of skewness. While two sample 
t-test in the bootstrap class tests achieves highest power 
at all alternatives. However, when the level of skewness 
becomes higher, i.e. at degree of freedom 1, classical and 
bootstrap tests attain almost same power. These results are 
also explained in Figure 1.

Table 2
Power of Tests of Skewness for Chi-Square Distribution

 DF 3rdMoment Theoreti-
cal Skewness

Classical Tests Bootstrap Tests

PRSN SK-1 SK-2 STDM SSS MED t KS

Sm
al

l S
am

pl
e 

Si
ze

 (n
=4

0)

10000 0 5.1 5.5 5.1 5.1 4.9 5.0 5.9 3.0

128 0.25 8.7 12.5 64.1 12.7 8.1 6.9 6.6 3.8

31 0.5 16.6 29.2 85.1 29.4 13.7 11.3 10.4 4.3

14 0.75 26.1 49.2 94.6 47.6 22.7 15.7 17.4 6.7

8 1 38.8 70.4 98.3 66.3 33.0 22.4 26.9 11.2

5 1.25 54.1 88.2 99.6 82.4 47.9 30.8 33.0 12.4

4 1.5 63.0 92.9 99.9 87.2 56.9 37.4 43.6 21.2

3 1.75 73.8 97.2 100.0 93.1 69.7 47.1 56.1 29.8

2 2 88.0 99.6 100.0 97.9 86.1 62.4 72.0 44.1

1 3 98.8 100.0 100.0 99.9 99.2 88.6 92.1 71.9

M
ed

iu
m

 S
am

pl
e 

Si
ze

 (n
=8

0)

128 0.25 10.7 17.6 71.3 18.9 10.2 7.9 9.6 4.6

31 0.5 23.9 43.6 92.8 47.8 20.0 14.4 15.3 5.3

14 0.75 41.2 73.2 99.0 75.6 35.2 22.5 30.4 10.8

8 1 60.3 92.1 99.9 91.7 53.2 34.3 47.3 21.0

5 1.25 79.6 99.2 100.0 98.3 72.5 46.5 65.4 36.0

4 1.5 86.7 99.7 100.0 99.4 81.4 56.2 71.8 43.4

3 1.75 94.0 100.0 100.0 99.9 91.2 67.5 85.3 62.0

2 2 98.9 100.0 100.0 100.0 98.5 84.2 95.4 78.5

1 3 100.0 100.0 100.0 100.0 100.0 98.7 99.8 96.1

La
rg

e 
Sa

m
pl

e 
Si

ze
 (n

=1
50

) 128 0.25 14.0 20.0 77.7 26.0 13.0 10.0 12.4 4.8

31 0.5 34.7 57.3 97.7 70.1 29.4 18.9 28.0 9.4

14 0.75 60.9 89.2 99.9 94.0 53.4 31.8 49.0 20.4

8 1 82.9 99.1 100.0 99.6 75.5 48.6 74.1 41.8

5 1.25 95.1 100.0 100.0 100.0 91.9 67.4 90.6 68.4

4 1.5 97.9 100.0 100.0 100.0 96.4 76.9 96.4 81.2

3 1.75 99.6 100.0 100.0 100.0 99.2 87.6 98.0 89.8

2 2 100.0 100.0 100.0 100.0 100.0 96.3 99.8 97.3

1 3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.7
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At small sample size (n=40) among the classical and 
bootstrap tests of skewness SK-2 test attains high power 
at different levels of skewness while KS test performs 
very poor having less power (see Figure 1). However, as 
the skewness increases KS test also achieves good power 
pattern. The power of SK-1 and STDM tests is almost 
same when the level of skewness is low but when level of 
skewness increases then SK-1 test performance gets better 
by attaining high power. When sample size is small then 
SK-2 test performs better in the category of classical tests 
of skewness while two sample t-test identifies as best in 
the bootstrap tests category. While, SK-2 test with high 
power is detected as best performer test among classical 
and bootstrap tests at n=40. When sample size becomes 
medium (i.e. n=80) then SK-2 test attains high power even 
at low level of skewness. At all level of skewness the power 
of SK-1 and STDM test is same by attaining same power. The 
power of KS test is worst by attaining low power at different 
alternatives of skewness. Among bootstrap tests, the two 
sample t-test has maximum power at different alternatives 
of skewness. Again, SK-2 test performs better in both 
categories by attaining high power at medium sample size. 

At large sample size (i.e. n=150) all classical tests of 
skewness have good power except MED test at different 
alternatives of skewness. The SSS test and t-test have 
almost same power by attaining same power at different 
alternatives of skewness. The KS test attains low power 
at low level of skewness but its power increases as level 
of skewness increases and gets higher than MED test 
as compared to its performance for small and medium 
samples. Hence, it is concluded that among all tests of 
skewness the SK-2 test shows better power, while KS test 
shows poor power for all sample sizes when the level of 
skewness is low. Also, SSS test did not show satisfactory 
power at small and medium sample size when the level of 

skewness is low.

Power Computation in Beta Distribution
At small sample size (n=40), SK-2 test performs best by 

having high power as compared to other tests when the 
values of parameters of beta distribution are high (see Table 
3). Similarly, in the class of bootstrap tests t-test performs 
better than KS test in small sample size. But, when the level 
of skewness is high then all classical tests have almost same 
power except MED test. At medium sample size (n=80) 
among classical tests of skewness, SK-2, SK-1 and STDM 
tests attain high power at low level of skewness. Similarly, 
t-test performs better at low level of skewness. However, at 
high level of skewness all classical tests and bootstrap tests 
attain same power. At large sample size (n=150), among 
classical tests SK-2, SK-1 and STDM tests have high power 
when beta distribution has parameters (2.8, 35). At this 
stage the power of MED test is very poor, while t-test shows 
high power. But, when the level of skewness becomes higher 
classical tests and bootstrap test attain almost same power.
Moreover, SK-2 test performs best by attaining high power 
among all tests of skewness when the sample size is small 
at all alternatives of skewness (see Figure 2). PRSN and SSS 
tests have almost same power at high level of skewness. KS 
test performs worst by attaining low power at low level of 
skewness, but when the levels of skewness becomes high 
then its power gets better. Among bootstrap tests, t-test 
performs better by attaining high power than its rival test. 

When sample size is 80 then SK -2 test performs best by 
attaining high power among all tests of skewness while KS 
test is identified as worst test (see Figure 2). SK-1 and STDM 
tests have same power at all level of skewness while MED 
test with less power at all alternatives is identified as worst 
test in the class of classical test of skewness. In the category 
of bootstrap tests, t-test with high power at each alternative 

Fig. 1. Power Curve of Classical Tests and Bootstrap Tests in Chi-Square Distribution 
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than KS test is detected as best test. At large sample size 
(n=150), all classical tests of skewness have good power 
except MED (classical test) and KS (bootstrap test) tests 

showing poor performance. Overall, KS test with less power 
at each alternative is identified as worst performer test in 
both categories. 

Table 3
Power of Tests of Skewness for Beta Distribution

 Parame-
ters

3rdMoment Theoreti-
cal Skewness

Classical Tests Bootstrap 
Tests

PRSN SK-1 SK-2 STDM SSS MED t KS

Sm
al

l S
am

pl
e 

Si
ze

 (n
=4

0)

(35,35) 0 4.6 5.5 5.7 5.7 4.9 5.0 5.2 2.7
(14.5,35) 0.25 10.0 14.9 37.7 15.4 8.8 8.0 6.4 3.3
(7.5,35) 0.5 18.0 33.8 70.8 34.6 16.3 12.3 11.5 4.6
(4.4,35) 0.75 29.9 59.6 90.8 57.4 26.1 18.2 19.2 7.6
(2.8,35) 1 43.8 79.6 97.5 75.3 39.3 25.9 28.7 12.2
(2,35) 1.25 58.2 92.6 99.3 88.1 53.7 35.0 37.9 17.0

(1.44,35) 1.5 72.0 97.6 99.9 94.3 69.4 46.4 52.2 28.4
(1.1,35) 1.75 83.7 99.2 100.0 97.6 82.2 58.0 63.3 39.5

(0.85,35) 2 91.5 99.9 100.0 99.3 90.7 68.8 76.2 50.5
(0.69,35) 2.25 96.0 100.0 100.0 99.7 96.2 77.5 82.9 60.1
(0.56,35) 2.5 98.1 100.0 100.0 99.9 98.5 85.1 89.7 70.1
(0.47,35) 2.75 99.0 100.0 100.0 100.0 99.5 89.9 93.6 75.5
(0.39,35) 3 99.8 100.0 100.0 100.0 99.9 94.2 95.6 81.5

M
ed

iu
m

 S
am

pl
e 

Si
ze

 (n
=8

0)

(14.5,35) 0.25 12.0 21.8 46.7 24.4 11.7 9.0 9.0 4.3
(7.5,35) 0.5 25.5 51.2 85.1 55.6 23.7 15.3 17.4 6.7
(4.4,35) 0.75 45.9 82.8 98.0 84.0 40.9 25.5 32.2 13.5
(2.8,35) 1 68.0 96.7 99.9 95.9 62.4 39.9 52.6 22.2
(2,35) 1.25 82.8 99.5 100.0 99.1 78.3 52.0 68.0 39.1

(1.44,35) 1.5 93.4 100.0 100.0 99.9 91.7 68.4 82.6 56.6
(1.1,35) 1.75 97.8 100.0 100.0 100.0 96.8 79.3 89.2 71.0

(0.85,35) 2 99.4 100.0 100.0 100.0 99.4 88.6 97.3 81.7
(0.69,35) 2.25 99.9 100.0 100.0 100.0 99.9 94.0 99.0 89.0
(0.56,35) 2.5 100.0 100.0 100.0 100.0 100.0 97.1 99.8 93.2
(0.47,35) 2.75 100.0 100.0 100.0 100.0 100.0 98.7 99.9 94.2
(0.39,35) 3 100.0 100.0 100.0 100.0 100.0 99.6 99.9 97.4

La
rg

e 
Sa

m
pl

e 
Si

ze
 (n

=1
50

)

(14.5,35) 0.25 16.9 27.2 55.0 34.3 14.3 11.2 12.6 5.5
(7.5,35) 0.5 40.8 70.3 94.5 80.0 34.8 22.1 29.2 11.1
(4.4,35) 0.75 69.0 96.5 99.9 97.9 60.5 38.7 54.0 24.2
(2.8,35) 1 89.3 99.9 100.0 99.9 83.6 58.3 79.8 51.2
(2,35) 1.25 97.4 100.0 100.0 100.0 94.6 74.7 90.8 74.2

(1.44,35) 1.5 99.6 100.0 100.0 100.0 99.0 87.4 98.7 90.8
(1.1,35) 1.75 99.9 100.0 100.0 100.0 99.9 95.0 99.7 96.0

(0.85,35) 2 100.0 100.0 100.0 100.0 100.0 98.4 99.9 98.3
(0.69,35) 2.25 100.0 100.0 100.0 100.0 100.0 99.6 100.0 98.5
(0.56,35) 2.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9
(0.47,35) 2.75 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9
(0.39,35) 3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9

Fig. 2. Power Curve of Classical Tests and Bootstrap Tests in Beta Distribution
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 Hence, it is observed that SK-2 and KS tests are identified 
as best and worst performer tests whether sample size is 
small medium or large when beta distribution is taken into 
account.

Power Computation in Lognormal Distribution
When lognormal distribution takes into to observe the 

power performance of classical and bootstrap skewness 
tests then it is analyzed that SK-2 performs best by attaining 
high power while SK test is classified as worst performer 
test (see Table 4).

Table 4
Power of Test of Skewness for Lognormal Distribution

 Parameters
3rdMoment 
Theoretical 
Skewness

Classical Tests Bootstrap Tests

PRSN SK-1 SK-2 STDM SSS MED t KS

Sm
al

l S
am

pl
e 

Si
ze

 (n
=4

0)

(10,.0001) 0 4.7 5.2 5.2 5.1 5.1 4.2 5.7 3.2

(10,0.007) 0.25 5.3 5.6 50.9 5.5 5.2 4.9 7.4 4.3

(10,0.03) 0.5 6.1 7.3 57.2 7.6 6.7 5.3 6.5 5.5

(10,0.06) 0.75 7.3 10.1 64.6 10.6 7.4 5.8 6.9 6.2

(10,0.1) 1 10.4 16.1 73.9 16.8 9.6 7.8 7.8 7.5

(10,0.15) 1.25 13.7 26.0 82.9 27.1 13.2 9.1 9.9 8.3

(10,0.20) 1.5 19.0 36.4 89.4 37.8 18.6 12.0 10.4 8.3

(10,0.25) 1.75 25.5 49.0 94.0 49.3 23.3 15.0 16.0 9.1

(10,0.31) 2 33.0 63.3 97.4 63.0 30.9 18.4 19.5 10.8

(10,0.36) 2.25 40.2 72.8 98.5 71.8 36.5 21.6 25.7 11.6

(10,0.41) 2.5 48.4 81.3 99.4 80.0 44.3 26.4 30.5 12.1

(10,0.46) 2.75 55.3 87.9 99.5 85.8 52.1 30.1 37.5 16.3

(10,0.52) 3 63.5 92.8 99.9 90.8 59.8 35.8 43.8 20.8

M
ed

iu
m

 S
am

pl
e 

Si
ze

 (n
=8

0)

(10,0.007) 0.25 5.8 6.4 51.3 6.3 5.9 5.4 7.6 4.4

(10,0.03) 0.5 8.1 9.7 61.2 10.3 6.7 7.1 6.5 6.2

(10,0.06) 0.75 10.3 15.1 70.7 16.3 8.4 7.8 7.2 7.4

(10,0.1) 1 14.9 24.7 81.8 28.4 12.5 10.0 9.8 8.4

(10,0.15) 1.25 22.5 40.4 91.0 46.1 18.4 13.8 15.6 8.9

(10,0.20) 1.5 31.1 57.4 96.5 64.0 25.2 17.1 21.2 9.6

(10,0.25) 1.75 43.6 73.8 98.9 78.3 34.6 23.4 27.7 10.3

(10,0.31) 2 56.1 86.8 99.7 89.7 46.2 30.8 36.4 12.7

(10,0.36) 2.25 66.8 93.7 99.9 95.2 55.5 36.2 49.0 17.7

(10,0.41) 2.5 76.3 97.1 100.0 97.6 66.4 44.1 57.9 22.5

(10,0.46) 2.75 83.1 98.9 100.0 98.9 73.3 50.1 67.3 35.1

(10,0.52) 3 89.8 99.6 100.0 99.6 81.7 58.0 76.5 40.4

La
rg

e 
Sa

m
pl

e 
Si

ze
 (n

=1
50

)

(10,0.007) 0.25 5.8 5.8 52.6 6.8 6.5 5.5 7.9 4.9

(10,0.03) 0.5 8.6 10.6 63.7 12.8 7.5 7.2 8.4 6.2

(10,0.06) 0.75 12.2 17.8 75.6 22.5 11.0 8.4 8.8 7.5

(10,0.1) 1 20.7 33.1 88.1 43.1 17.1 12.6 11.8 8.6

(10,0.15) 1.25 32.9 55.0 96.3 69.0 27.5 17.7 19.4 9.8

(10,0.20) 1.5 48.3 75.6 99.2 87.2 39.4 24.4 35.2 11.7

(10,0.25) 1.75 63.5 89.5 99.9 95.7 54.4 34.2 47.9 18.8

(10,0.31) 2 78.9 97.5 100.0 99.3 69.3 44.3 63.0 27.0

(10,0.36) 2.25 88.3 99.4 100.0 99.8 79.9 53.9 75.8 40.1

(10,0.41) 2.5 94.1 99.9 100.0 100.0 87.7 62.6 84.1 50.7

(10,0.46) 2.75 97.2 100.0 100.0 100.0 93.4 70.8 91.9 66.8

(10,0.52) 3 99.0 100.0 100.0 100.0 97.0 79.3 96.1 77.1

At small sample size among classical tests of skewness 
the SK-2 performs best by attaining high power when the 
parameters of lognormal distribution is low. But, when the 
level of skewness is high then among classical tests SK-2 has 
maximum power and MED has the lowest power. Similarly, 
t-test is the better performer test when parameter values of 

lognormal distribution are high but at low parametric values 
both of the bootstrap tests have same power. At medium 
sample size (n=80) among classical tests, only SK-2 attains 
high power at low level of skewness. Similarly, bootstrap 
test has same power at low level of skewness. However, at 
high level of skewness among classical tests SK-2, SK-1 and
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STDM tests have almost same power. In large sample size 
(n=150), all classical tests have same power except MED 
and SSS tests at high level of skewness. At this stage the 
power of MED test is very poor. While bootstrap test also 
shows high power.

It is also analyzed that SK-2 test with maximum power 
at each alternatives of skewness is obtained as best test 
while KS test is found as worst performing test among both 
categories of tests (see Figure 3) when sample size is small 
(n=40). Among classical tests of skewness SK-2 test performs 
best by attaining high power while MED test identifies as 
worst test when the sample size is small. Moreover, power 
of all tests of skewness is almost same except SK-2 when 
the level of skewness is 1 but then increases when the 
level of skewness becomes high. At medium sample size 
(n=80), power of SK-2 test is far better than other tests 
of skewness by attaining high power at each alternatives 
of skewness while KS test with less power is detected as 
worst test. SK-1 and STDM tests have almost same power at 
different alternatives of skewness. Moreover, MED test has 
worst performance by attaining low power at different level 
of skewness in the category of classical tests of skewness. 
Also, at medium sample size the performance of all tests of 
skewness get better than small sample size.

At large sample size (n=150), it is observed that 
performance of all tests of skewness at different 
alternatives of skewness is better than their performance 
at n=40 and n=80. Again, SK-2 test is still showing better 

performance by attaining high power at each alternatives 
of skewness when the sample size is large. Similarly, MED 
and KS tests have still classified as worst performer tests 
in category of classical and bootstrap tests, respectively, at 
all alternatives of skewness. However, KS test is the worst 
performer test among all tests by attaining low power at 
different alternatives of skewness. Hence, at large, medium 
and small sample sizes among all tests of skewness KS 
test shows poor performance while SK-2 test is the best 
performing test. 

Power Computation in Mixture of Two Normal Distributions
The mixture of two normal distributions with different 

alternatives of skewness is taken to compare all skewness 
tests. It is observed that SK-2 test performs best as compared 
to all other skewness tests by attaining high power while KS 
test is found to be worst performer test (see Table 5). At 
small sample size (n=40), among classical tests of skewness 
SK-2 with high power is identified best test when the level 
of skewness is low. However, as the level of skewness is 
increases SK-2, SK-1 and STDM tests have almost same 
power while SSS and MED tests have the lowest power. 
At medium sample size (n=80) among classical tests, only 
SK-2 attains high power at low level of skewness. Moreover, 
at high level of skewness among classical tests SK-2, SK-1 
and STDM tests attain same power pattern. Similarly, in the 
bootstrap tests category t-test has highest power while KS 
test shows worst performance by attaining low power.

Fig. 3. Power Curve of Classical Tests and Bootstrap Tests in Lognormal Distribution

In large sample size (n=150) among classical tests at 
low level of skewness SK-2 test attains high power. But, as 
the level of skewness increases all other tests show better 
performance except MED, SSS and KS tests of skewness. At 
highest level of skewness among all tests of skewness PRSN, 
SK-2, SK-1, STDM and t tests have same power. 

At small sample size (n=40), it is observed that SK-2 test 
performs best by attaining high power when the level of 
skewness increases (see Figure 4). Similarly, SK-1 and STDM 
tests also show better performance by attaining high power 
as the level of skewness increases. While, KS test shows 
poor performance by attaining low power at different 
alternatives of skewness.
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Table 5
Power of Tests of Skewness for Mixture of Two Normal Distributions

 3rdMoment Theoreti-
cal Skewness

Classical Tests Bootstrap Tests
PRSN SK-1 SK-2 STDM SSS MED t KS

Sm
al

l S
am

pl
e 

Si
ze

 (n
=4

0)
0 5.2 5.2 5.2 4.7 4.8 5.0 5.0 3.3

0.25 5.6 8.7 44.6 9.8 5.9 5.2 10.1 5.9
0.5 8.4 17.4 76.3 23.8 9.4 6.9 12.6 6.0

0.75 12.6 31.2 89.5 44.6 15.8 18.3 17.1 7.0
1 20.3 50.0 98.2 71.6 27.6 22.0 23.0 8.2

1.25 28.3 69.1 99.8 89.8 34.7 33.9 27.8 8.4
1.5 36.3 85.5 99.9 96.4 40.6 36.4 32.9 8.8

1.75 46.3 94.8 100.0 98.5 43.6 40.7 38.0 9.0
2 57.0 98.3 100.0 98.5 44.3 42.3 43.5 9.1

2.25 68.1 98.5 100.0 98.7 44.4 43.7 47.4 9.4
2.5 69.0 98.6 100.0 99.6 45.1 44.1 49.8 9.7

2.75 69.5 98.9 100.0 100.0 46.2 44.8 53.7 10.0
3 71.4 100.0 100.0 100.0 47.5 44.9 56.0 10.6

M
ed

iu
m

 S
am

pl
e 

Si
ze

 (n
=8

0)

0.25 7.0 11.3 66.4 15.5 6.6 7.5 12.9 10.8
0.5 14.2 25.7 87.7 42.7 13.8 15.2 21.1 12.8

0.75 24.8 47.0 96.3 73.6 24.3 19.8 32.9 15.5
1 43.4 67.8 99.9 95.6 37.8 26.5 47.4 20.8

1.25 58.0 85.7 100.0 99.5 45.7 36.2 59.4 23.9
1.5 70.7 96.3 100.0 99.9 46.6 40.7 69.2 25.5

1.75 81.9 99.6 100.0 100.0 47.6 43.7 77.5 26.6
2 89.7 100.0 100.0 100.0 48.0 46.0 83.4 26.6

2.25 94.5 100.0 100.0 100.0 49.3 48.1 88.7 27.4
2.5 95.5 100.0 100.0 100.0 50.1 48.7 89.4 28.9

2.75 96.5 100.0 100.0 100.0 52.3 50.4 91.3 29.8
3 97.1 100.0 100.0 100.0 53.3 50.5 94.3 32.0

La
rg

e 
Sa

m
pl

e 
Si

ze
 (n

=1
50

)

0.25 10.8 15.3 86.8 25.1 9.7 8.8 17.5 7.0
0.5 25.4 36.6 98.9 68.7 22.6 12.4 35.1 10.2

0.75 48.2 62.7 99.8 84.8 39.3 18.5 54.4 14.6
1 73.6 83.1 100.0 96.9 55.9 27.0 76.2 21.7

1.25 86.5 94.5 100.0 99.9 60.2 33.7 87.7 27.6
1.5 94.6 99.1 100.0 100.0 61.5 39.9 93.7 33.3

1.75 98.1 99.9 100.0 100.0 62.2 45.7 97.6 38.7
2 99.4 100.0 100.0 100.0 64.0 48.8 98.8 42.2

2.25 99.9 100.0 100.0 100.0 65.8 52.9 99.8 47.6
2.5 100.0 100.0 100.0 100.0 66.7 56.4 100.0 52.2

2.75 100.0 100.0 100.0 100.0 67.8 58.9 100.0 53.8
3 100.0 100.0 100.0 100.0 69.0 63.0 100.0 56.8

Fig. 4. Power Curve of Classical and Bootstrap Tests in Mixture of Two Normal Distribution
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When the size of sample increases to 80 then SK-2 test 
performs best by attaining high power while KS test has kept 
its previous position (worst performer). The performance of 
MED and SSS tests are very poor by attaining low power at 
different alternatives of skewness and identified as worst 
performing tests in the category of classical tests.

At large sample size (n=150), a similar pattern of 
almost all tests have been analyzed as shown for small 
and medium sample sizes. Here, PRSN and t-test have 
almost the same power while power of SSS test gets better 
when the level of skewness becomes high. MED and KS 
tests show poor performance by attaining low power at 
different alternatives of skewness. Hence, among all tests of 
skewness MED and KS tests show poor power for all sample 
sizes while only SK-2 shows best power in all sample sizes.

Power Computation in Mixture of Two Uniforms and Normal 
Distribution

When data are generated from mixture of two uniforms 

and normal distributions (i.e. DGP-6) then power of all 
classical and bootstrap tests of skewness are compared and 
very different results are obtained as compared to results of 
DGP-2, DGP-3, DGP-4 and DGP-5 (see Table 6). It is observed 
that all the classical tests of skewness detect zero skewness 
while the distribution is skewed. Also, we have observed 
that power of some of the classical test of skewness is equal 
to the size of the test. Moreover, SK-2 test have showed 
excellent performance in DGP-2, DGP-3, DGP-4 and DGP-
5 but fails to detect high power for all sample sizes under 
DGP-6. While, bootstrap tests of skewness detect high 
power for all sample sizes under DGP-6. Hence, all classical 
tests of skewness completely fails in detecting skewness 
even though distribution is skewed while bootstrap tests of 
skewness shows high power in detecting skewness.  

4. EMPIRICAL EXAMPLES
Most of classical tests of skewness based on the third 

central moment, there are situations where the third 
central moment is zero but there is skewness. 

Table 6
Power of Tests of Skewness for Mixture of Two Uniforms and Normal Distributions

 Classical Tests Bootstrap Tests

Sm
al

l  
Sa

m
pl

e 
Si

ze
 (n

=4
0) PRSN SK-1 SK-2 STDM SSS MED t KS

0 0 0 0 0 0 96.2 88.9

5.5 2.6 0 2.6 4.4 2.5 76.7 73.5

0 0 0 0 0 0 99.3 90.7

4.7 1.6 0 1.4 4.4 4.4 83.5 79

1.1 3.8 0 1.9 3.7 2.4 89.6 82.4

0 0 0 0 0 1 85 81

M
ed

iu
m

 S
am

pl
e 

Si
ze

 
(n

=8
0)

 

0 0 0 0 0 0 99.9 99.9

6.5 4.7 0 3.4 5.7 2.6 82 83

0 0 0 0 0 0. 100 99.7

5.6 0.3 0 0.3 3.4 5.8 84.3 81

1.7 4.1 0 2.9 4.9 4.6 91.9 85

0 0 0 0 0 0 88 85.5

La
rg

e 
Sa

m
pl

e 
Si

ze
 

(n
=1

50
)

0 0 0 0 0 0 100 100

6.4 4.7 0 3.2 5.5 3.5 99.5 95.5

0 0 0 0 0 0 100 100

6.2 0 0 0 4.4 6.7 88.7 90

2.5 4.9 0 1.9 4.7 5.5 95.5 89.2

0 0 0 0 0 0 91.3 88.6

Table 7
Results of Classical and Bootstrap Tests of Whole Sale Price Index of Netherland

Classical Tests Bootstrap Tests

Calculated Skewness
SRSN   SK-1   SK-2 STDM   SSS  MED           t    KS

-0.78 0.93 0.98 -0.03 -0.24 -0.36 3.54 0.44

Critical Value 0.48 1.66 11.22 0.52  0.6 0.23 (-2.09,2.09)   0.4

Conclusions   Insig;  Insig; Insig;  Insig; Insig; Insig;        Sig; Sig;

A real world example of data of Whole Sale Price 
Index (WSPI) of Netherland having skewed distribution 
is elaborated (see Figure 5), whose third moment is zero 
even there exists skewness which is only detected by 

bootstrap tests while classical tests of skewness are unable 
to detect skewness (see Table 7). These results indicate the 
importance of bootstrap tests whenever classical tests of 
skewness are unable to detect skewness.
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There is another real world example of data of food 
production index of Antigua and Barbados having skewed 
distribution (see Figure 6), whose third central moment 
is zero in the presence of skewness but classical tests are 
fail to detect it while bootstrap tests have identified this 
distribution as skewed (see Table 8). There are also many 
more other real world examples of different countries data, 
the distribution of which is detected as skewed through 
histogram but classical tests of skewness fail to identify 
them skewed while bootstrap tests do. Similarly a data 
analysis of Pakistan by Raza et al. (2020), Latin America and 

Caribbean countries data analysis by Raza et al. (2023) and 
BRICS countries data analysis by Raza et al. (2024) can be 
test to get similar results

Hence, it is observed from the data of whole sale price 
index of Netherland and food production index of Antigua 
and Barbados that all classical tests of skewness are unable 
to detect skewness while bootstrap tests have successfully 
spotted skewness in the data. An attempt can be made for 
the Pak-Chinese Rupees-Yuan comparison and the analysis 
for this has been done by Waheed et al. (2023).    

Fig. 5. Distribution of Data of Whole Sales Price Index (WSPI) of Netherland

Fig. 6. Distribution of Food Production Index of Antigua and Barbados

Table 8
Results of Classical and Bootstrap Tests of Skewness of Food Production Index of Antigua and Barbados

Classical Tests Bootstrap Tests

Calculated Skewness
PRSN SK-1 SK-2 STDM SSS MED t KS

- 0.88 1.08 1.02 0.02 -1.45 -0.55 2.93 0.47

Critical Value 0.49 1.65 9.19 0.52 0.58 0.24 (-2.21,2.21) 0.39

Conclusions Insig; Insig; Insig; Insig; Insig; Insig; Sig;  Sig;

5. CONCLUSION & RECOMMENDATION
This study concludes that SK-2 test and MED test are 

identified as best and worst performing tests, respectively, 
in all sample sizes in the category of classical tests of 
skewness. While, in the category of bootstrap tests 
t-test outperforms KS test by attaining high power at all 
alternatives whether sample size is small, medium or large. 
Overall, it is observed that SK-2 test with maximum power 
at all alternatives corresponding to small, medium and 
large sample sizes is detected as most powerful test among 
all classical and bootstrap tests of skewness while KS test 

is considered as worst performer test when DGP-2, DGP-
3, DGP-4 and DGP-5 are considered. However, there are 
certain situations where the third moment is zero despite 
having skewed distribution. In these cases the classical tests 
did not perform well, e.g. for the mixture of two Uniforms 
and Normal distribution (under DGP-6) which is skewed 
distribution in which the power of classical tests remains in 
between 0 and 7%. But, the power of bootstrap test remains 
between 74% and 100% and outperform classical tests. Real 
data examples are also furnished where third moment 
is zero but the distribution is not symmetric. In these 
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examples, classical tests of skewness were unable to detect 
skewness while bootstrap tests have successfully detect it.  

Therefore this study recommends classical tests of 
skewness are more appropriate to apply if third moment 
of data is non-zero. However, if the third moment of data 
is zero and the empirical histogram shows significant 
deviation from symmetry then one should apply bootstrap 
tests for skewness.

Conflict interests 
The authors has declared that no competing interests 
exist.

References

Adil, I. H. (2011). Robust Outlier Detection Techniques for Skewed 
Distributions and Applications to Real Data, International 
Islamic University Islamabad.

Akbar, S., Raza, A., & Riaz, Y. (2019). A Monte Carlo Simulation 
Analysis of Panel Stationarity Tests under a Single 
Framework. European Online Journal of Natural and Social 
Sciences: Proceedings, 8(1 (s)), 34-41.

Brys, G., Hubert, M., and Struyf, A. (2003). “A Comparison of 
some New Measures of Skewness”, Developments in Robust 
Statistics, Springer: 98-113. 

Brys, G., Hubert, M., and Struyf, A. (2004). ”A Robust Measure of 
Skewness.” Journal of Computational and Graphical Statistics 
13(4): 996-1017.

Doane, D. P., and Seward, L. E. (2011). ”Measuring Skewness: A 
Forgotten Statistic?” Journal of Statistics Education 19(2). 

Efron, B. (1979). ”Bootstrap Methods: Another Look at the 
Jackknife.” The Annals of Statistics 7(1): 1-26. 

Efron, B. (1982). The Jackknife, The Bootstrap, and other 
Resampling Plans, Siam. 

Gosset, W. S. (1908). Student. The Application of the’Law of Error’to 
the Work of the Brewery, 

Hussan, M., & Akbar, S. (2019). “A Monte Carlo Comparative 
Simulation Study for Identification of the Best Performing 
Panel Cointegration Tests”, European Online Journal of Natural 
and Social Sciences, 8(2), pp:366-373.

Jarque, C. M., & Bera, A. K. (1980). “Efficient tests for normality, 
homoscedasticity and serial independence of regression 
residuals”, Economics Letters, 6(3), 255-259.

https://doi.org/10.1016/0165-1765(80)90024-5

Modarres, R. (2002). ”Efficient Nonparametric Estimation of 
a Distribution Function.” Computational Statistics & Data 
Analysis 39(1): 75-95. 

Pearson, K. (1895). ”Contributions to the Mathematical Theory 
of Evolution, II: Skew Variation in Homogeneous Material.” 
Transactions of the Royal Philosophical Society, Series A 186: 
343-414.

Raza, A., Azam, K, & Tariq, M. (2020). “The Impact of Greenfield-FDI 
on Socio-Economic Development of Pakistan”. HSE Economic 
Journal, 24(3): 415-433.

https://doi.org/10.17323/1813-8691-2020-24-3-415-433

Raza, A., Azam, M. & Bakhtyar, B. (2024). “Exploring the Linkage 
between Energy Consumption and Economic Growth in 
BRICS Countries through Disaggregated Analysis”, Journal of 
the Knowledge Economy, 15(2), 1-24. https://doi.org/10.1007/
s13132-024-02045-1

Raza, A., Nadeem, M. I., Ahmed, K., Hassan, I., Eldin, S. M., & Ghamry, 
N. A. (2023). Is Greenfield investment improving welfare: 
A quantitative analysis for Latin American and Caribbean 
developing countries. Heliyon, 9(10), e20703. 

https://doi.org/10.1016/j.heliyon.2023.e20703

Riaz, Y., Raza, A., & Rashid, M. (2018). “Comparison of Residual based 
Co-integration Tests: Evidence from Monte Carlo”, European 
Online Journal of Natural and Social Sciences, 7(2), 494-500. 

Smirnov, N. V. e. (1947). ”On Criteria for The Symmetry of 
Distribution Laws of Random Variables.” Rossiiskaya 
Akademiya Nauk 56: 13-16. 

Stuart, A. and Ord, K. (1994). “Kendall’s Advanced Theory of 
Statistics”, Volume 1: Distribution Theory. 6th Edition, Edward 
Arnold, London.

Tabor, J. (2010). ”Investigating the Investigative Task: Testing 
for Skewness: An Investigation of Different Test Statistics 
and Their Power to Detect Skewness.” Journal of Statistics 
Education 18(2). 

Tibshirani, R. J., and Efron, B. (1993). ”An Introduction to The 
Bootstrap.” Monographs on Statistics and Applied Probability 
57: 1-436.

Waheed, A., Rashid, A., & Akbar, S. (2021). “Detecting the Best 
Performing Time-Variant Cointegration Test Using the 
Consumption Function”, International Transaction Journal 
of Engineering, Management, & Applied Sciences & 
Technologies, 12(4), 1-5.

Whaeed, A., Akbar, S., Siddiq, S. A. B., & Raza, A. (2023). “Testing 
and Identifying Multiple Bubbles in Pak Rupee-Chinese Yuan 
Exchange Rate”, Journal of Positive School Psychology, 7(2), 
1937-1951. 

Zheng, T., and Gastwirth, J. L. (2010). ”On Bootstrap Tests of 
Symmetry about an Unknown Median.” Journal of Data 
Science: JDS 8(3): 413.

https://doi.org/10.1016/0165-1765%2880%2990024-5
https://doi.org/10.17323/1813-8691-2020-24-3-415-433
https://doi.org/10.1016/j.heliyon.2023.e20703

